Q.
Let y=f(x) be a curve passing through (e,ee), which satisfy the differential equation (2ny+xylogex)dx−xlogexdy=0x>0,y>0. If g(x)=limn→∞f(x), then ∫1/eeg(x)dx equals to
(2ny+xylogex)dx=xlogexdy ⇒ydy=(xlogex2n+1)dx ⇒log(y)=2nlog∣logx∣+x+c and c=0 (∵ curve passes through (e,ee)) y=ex+log(logx)2n=ex(logx)2n ⇒f(x)=ex(logx)2n
Now, g(x)=n→∞limf(x)=⎩⎨⎧→∞0→∞ if if if x<e1e1<x<ex>e ∴∫1/eeg(x)dx=0