Q. Let $y=f(x)$ be a curve passing through $\left(e, e^{e}\right)$, which satisfy the differential equation $\left(2 n y+x y \log _{e} x\right) d x-x \log _{e} x d y=0$ $x > 0, y > 0$. If $g(x)=\lim _{n \rightarrow \infty} f(x)$, then $\int_{1 / e}^{e} g(x) d x$ equals to
Differential Equations
Solution: