Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x(t)=2 √2 cos t √ sin 2 t and y(t)=2 √2 sin t √ sin 2 t, t ∈(0, (π/2)). Then (1+((d y/d x))2/(d2 y)d x2) at t=(π/4) is equal to
Q. Let
x
(
t
)
=
2
2
cos
t
sin
2
t
and
y
(
t
)
=
2
2
sin
t
sin
2
t
,
t
∈
(
0
,
2
π
)
. Then
d
x
2
d
2
y
1
+
(
d
x
d
y
)
2
at
t
=
4
π
is equal to
909
2
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
3
−
2
2
B
3
2
C
3
1
D
3
−
2
Solution:
x
=
2
2
cos
t
sin
2
t
d
t
d
x
=
s
i
n
2
t
2
2
c
o
s
3
t
y
(
t
)
=
2
2
sin
t
sin
2
t
d
t
d
y
=
s
i
n
2
t
2
2
s
i
n
3
t
d
x
d
y
=
tan
3
t
d
x
d
y
=
−
1
at
t
=
4
π
d
x
2
d
2
y
=
2
2
3
sec
3
3
t
⋅
sin
2
t
=
−
3
at
t
=
4
π
∴
d
x
2
d
2
y
1
+
(
d
x
d
y
)
2
=
−
3
1
+
1
=
−
3
2