Q. Let $x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$ and $y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$. Then $\frac{1+\left(\frac{d y}{d x}\right)^2}{\frac{d^2 y}{d x^2}}$ at $t=\frac{\pi}{4}$ is equal to
Solution:
Solution: