Q.
Let [x] denote the greatest integer ≤x, where x∈R. If the domain of the real valued function f(x)=∣[x]∣−3∣[x]∣−2 is (−∞,a)∪[b,c)∪[4,∞),a<b<c, then the value of a+b+c is:
For domain, ∣[x]∣−3∣[x]∣−2≥0
Case 1 : When ∣[x]∣−2≥0
and ∣[x]∣−3>0 ∴x∈(−∞,−3)∪[4,∞)……..(1)
Case II : When ∣[x]∣−2≥0
and ∣[x]∣−3<0 ∴x∈[−2,3)…….(2)
So, from (1) and (2)
we get
Domain of function =(−∞,−3)∪[−2,3)∪[4,∞) ∴(a+b+c)=−3+(−2)+3 =−2(a<b<c)