Q. Let $[x]$ denote the greatest integer $\leq x$, where $x \in R$. If the domain of the real valued function $f(x)=\sqrt{\frac{|[x]|-2}{|[x]|-3}}$ is $(-\infty, a) \cup[b, c) \cup[4, \infty), a < b < c$, then the value of $a+b+c$ is:
Solution:
Solution: