Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let X=[ beginmatrix x y z endmatrix ],D=[ beginmatrix 3 5 11 endmatrix ] and A=[ beginmatrix 1 -1 -2 2 1 1 4 -1 -2 endmatrix ], if X=A-1D, then X is equal to:
Q. Let
X
=
⎣
⎡
x
y
z
⎦
⎤
,
D
=
⎣
⎡
3
5
11
⎦
⎤
and
A
=
⎣
⎡
1
2
4
−
1
1
−
1
−
2
1
−
2
⎦
⎤
,
if
X
=
A
−
1
D
,
then
X
is equal to:
1884
201
KEAM
KEAM 2004
Report Error
A
⎣
⎡
1
0
2
⎦
⎤
B
⎣
⎡
3
8
3
−
1
0
⎦
⎤
C
⎣
⎡
3
−
8
1
0
⎦
⎤
D
⎣
⎡
3
8
3
1
−
1
⎦
⎤
E
⎣
⎡
3
8
3
1
0
⎦
⎤
Solution:
∵
A
=
⎣
⎡
1
2
4
−
1
1
−
1
−
2
1
−
2
⎦
⎤
∴
A
−
1
=
3
1
⎣
⎡
−
1
8
−
6
0
6
−
3
1
−
5
3
⎦
⎤
Now,
A
−
1
D
=
3
1
⎣
⎡
−
1
8
−
6
0
6
−
3
1
−
5
3
⎦
⎤
⎣
⎡
3
5
11
⎦
⎤
=
3
1
⎣
⎡
8
−
1
0
⎦
⎤
⇒
⎣
⎡
x
y
z
⎦
⎤
=
⎣
⎡
8/3
−
1/3
0
⎦
⎤