Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $ X=\left[ \begin{matrix} x \\ y \\ z \\ \end{matrix} \right],D=\left[ \begin{matrix} 3 \\ 5 \\ 11 \\ \end{matrix} \right] $ and $ A=\left[ \begin{matrix} 1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \\ \end{matrix} \right], $ if $ X={{A}^{-1}}D, $ then $ X $ is equal to:

KEAMKEAM 2004

Solution:

$ \because $ $ A=\left[ \begin{matrix} 1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \\ \end{matrix} \right] $
$ \therefore $ $ {{A}^{-1}}=\frac{1}{3}\left[ \begin{matrix} -1 & 0 & 1 \\ 8 & 6 & -5 \\ -6 & -3 & 3 \\ \end{matrix} \right] $
Now, $ {{A}^{-1}}D=\frac{1}{3}\left[ \begin{matrix} -1 & 0 & 1 \\ 8 & 6 & -5 \\ -6 & -3 & 3 \\ \end{matrix} \right]\left[ \begin{matrix} 3 \\ 5 \\ 11 \\ \end{matrix} \right] $
$ =\frac{1}{3}\left[ \begin{matrix} 8 \\ -1 \\ 0 \\ \end{matrix} \right] $
$ \Rightarrow $ $ \left[ \begin{matrix} x \\ y \\ z \\ \end{matrix} \right]=\left[ \begin{matrix} 8/3 \\ -1/3 \\ 0 \\ \end{matrix} \right] $