Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let X=[ beginmatrix x1 x2 x3 endmatrix ],A=[ beginmatrix 1 -1 2 2 0 1 3 2 1 endmatrix ] and B=[ beginmatrix 3 1 4 endmatrix ] . If AX=B, then X is equal to:
Q. Let
X
=
⎣
⎡
x
1
x
2
x
3
⎦
⎤
,
A
=
⎣
⎡
1
2
3
−
1
0
2
2
1
1
⎦
⎤
and
B
=
⎣
⎡
3
1
4
⎦
⎤
. If
A
X
=
B
,
then
X
is equal to:
1868
206
KEAM
KEAM 2003
Report Error
A
⎣
⎡
1
2
3
⎦
⎤
B
⎣
⎡
−
1
−
2
3
⎦
⎤
C
⎣
⎡
−
1
−
2
−
3
⎦
⎤
D
⎣
⎡
−
1
2
3
⎦
⎤
E
⎣
⎡
0
2
1
⎦
⎤
Solution:
∵
A
=
⎣
⎡
1
2
3
−
1
0
2
2
1
1
⎦
⎤
∴
A
−
1
=
5
1
⎣
⎡
−
2
1
4
5
−
5
−
5
−
1
3
2
⎦
⎤
Now,
A
−
1
B
=
5
1
⎣
⎡
−
2
1
4
5
−
5
−
5
−
1
3
2
⎦
⎤
⎣
⎡
3
1
4
⎦
⎤
⎣
⎡
x
1
x
2
x
3
⎦
⎤
=
⎣
⎡
−
1
2
3
⎦
⎤