Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $ X=\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ {{x}_{3}} \\ \end{matrix} \right],A=\left[ \begin{matrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \\ \end{matrix} \right] $ and $ B=\left[ \begin{matrix} 3 \\ 1 \\ 4 \\ \end{matrix} \right] $ . If $ AX=B, $ then $ X $ is equal to:

KEAMKEAM 2003

Solution:

$ \because $ $ A=\left[ \begin{matrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \\ \end{matrix} \right] $ $ \therefore $ $ {{A}^{-1}}=\frac{1}{5}\left[ \begin{matrix} -2 & 5 & -1 \\ 1 & -5 & 3 \\ 4 & -5 & 2 \\ \end{matrix} \right] $ Now, $ {{A}^{-1}}B=\frac{1}{5}\left[ \begin{matrix} -2 & 5 & -1 \\ 1 & -5 & 3 \\ 4 & -5 & 2 \\ \end{matrix} \right]\left[ \begin{matrix} 3 \\ 1 \\ 4 \\ \end{matrix} \right] $ $ \left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ {{x}_{3}} \\ \end{matrix} \right]=\left[ \begin{matrix} -1 \\ 2 \\ 3 \\ \end{matrix} \right] $