Q.
Let X be a non-empty set and let P(X) denote the collection of all subsets of X. Define f:X×P(X)→R by f(x,A)=f(n)=⎩⎨⎧1,0,if x∈Aif x∈/A
Then, f(x,A∪B) equals
We have, f:X×P(X)→R f(x,A)=⎩⎨⎧1,0,if x∈Aif x∈/A f(x,A∪B)=⎩⎨⎧1,0,if x∈A∪Bif x∈/A∪B
If x∈A,x∈B⇒f(x,A∪B)=1
If x∈A,x∈/B⇒f(x,A∪B)=1
If x∈/A,x∈B⇒f(x,A∪B)=1
If x∈/A,x∈/B⇒f(x,A∪B)=0 ∴f(x,A∪B)=f(x,A)+f(x,B) −f(x,A)⋅f(x,B) [∵n(A∪B)=n(A)+n(B)−n(A∩B)]