Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $X$ be a non-empty set and let $P(X) $ denote the collection of all subsets of X. Define
$f : X \times P(X) \to R$ by $f (x, A) = f(n) = \begin{cases} 1, & \text{if $x \in\,A$ } \\[2ex] 0, & \text{if $x \notin\,A$ } \end{cases}$
Then, $f \left(x, A \cup B\right)$ equals

KVPYKVPY 2011

Solution:

We have,
$ f : X \times P(X) \to R$
$f(x , A) = \begin{cases} 1, & \text{if $x \in\,A$ } \\[2ex] 0, & \text{if $x \notin\,A$ } \end{cases}$
$f(x , A \cup B) = \begin{cases} 1, & \text{if $x \in\,A \cup B$ } \\[2ex] 0, & \text{if $x \notin\,A \cup B$ } \end{cases}$
If $x \in A, x \in B \Rightarrow f \left(x, A \cup B\right)=1 $
If $x \in A, x \notin B \Rightarrow f \left(x, A \cup B\right)=1 $
If $x \notin A , x \in B \Rightarrow f \left(x, A \cup B\right)=1 $
If $x \notin A , x \notin B \Rightarrow f \left(x,A \cup B\right)=0 $
$\therefore f \left(x, A \cup B\right)=f \left(x, A\right)+f \left(x, B\right)$
$-f \left(x, A\right)\cdot f \left(x, B\right)$
$\left[\because n \left(A \cup B\right)=n \left(A\right)+n \left(B\right)-n \left(A \cap B\right)\right]$