Q.
Let x and y be 2 real numbers which satisfy the equations
(tan2x−sec2y)=65a−3 and (−sec2x+tan2y)=a2, then the value of a can be equal to
122
105
Complex Numbers and Quadratic Equations
Report Error
Solution:
On adding these two equations, we get (tan2x−sec2y)+(−sec2x+tan2y)=65a−3+a2⇒−2=65a−3+a2
Hence 6a2+5a−6=0⇒6a2+9a−4a−6=0⇒(2a+3)(3a−2)=0
Hence a=2−3 or 32]