Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $x$ and $y$ be 2 real numbers which satisfy the equations $\left(\tan ^2 x-\sec ^2 y\right)=\frac{5 a}{6}-3$ and $\left(-\sec ^2 x+\tan ^2 y\right)=a^2$, then the value of a can be equal to

Complex Numbers and Quadratic Equations

Solution:

On adding these two equations, we get
$\left(\tan ^2 x-\sec ^2 y\right)+\left(-\sec ^2 x+\tan ^2 y\right)=\frac{5}{6} a-3+a^2 \Rightarrow-2=\frac{5}{6} a-3+a^2$
Hence $6 a^2+5 a-6=0 \Rightarrow 6 a^2+9 a-4 a-6=0 \Rightarrow(2 a+3)(3 a-2)=0$
Hence $a =\frac{-3}{2}$ or $\left.\frac{2}{3}\right] $