Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x+(1/x)=1 and a, b and c are distinct positive integers such that (xa+(1/xa))+(xb+(1/xb))+(xc+(1/xc))=0. Then the minimum value of (a+b+c) is
Q. Let
x
+
x
1
=
1
and
a
,
b
and
c
are distinct positive integers such that
(
x
a
+
x
a
1
)
+
(
x
b
+
x
b
1
)
+
(
x
c
+
x
c
1
)
=
0
. Then the minimum value of
(
a
+
b
+
c
)
is
1477
137
Complex Numbers and Quadratic Equations
Report Error
A
7
B
8
C
9
D
10
Solution:
x
+
x
1
=
1
or
x
2
−
x
+
1
=
0
∴
x
=
2
1
±
i
2
3
or
x
=
e
3
iπ
∴
x
a
+
x
−
a
=
e
3
iaπ
+
e
3
−
ia
=
2
cos
3
aπ
Hence,
cos
3
aπ
+
cos
3
bπ
+
cos
3
c
π
=
0
a
,
b
,
c
∈
I
∴
a
+
b
+
c
∣
m
i
n
=
(
1
+
3
+
5
)
=
9