Q. Let $x+\frac{1}{x}=1$ and $a, b$ and $c$ are distinct positive integers such that $\left(x^{a}+\frac{1}{x^{a}}\right)+\left(x^{b}+\frac{1}{x^{b}}\right)+\left(x^{c}+\frac{1}{x^{c}}\right)=0$. Then the minimum value of $(a+b+c)$ is
Complex Numbers and Quadratic Equations
Solution: