Q.
Let x0 be the point of local maxima of f(x)=a⋅(b×c), where a=xi^−2j^+3k^b=−2i^+xj^−k^ and c=7i^−2j^+xk^. Then the value of a⋅b+b⋅c+c⋅a at x=x0 is :
f(x)=a.(b×c)=∣∣x−27−2x−23−1x∣∣ =x3−27x+26 f′(x)=3x2−27=0 ⇒x=±3
and f′′(−3)<0 ⇒ local maxima at x=x0=−3
Thus, a=−3i^−2j^+3k^ b=−2i^−3j^−k^
and c=7i^−2j^−3k^ ⇒a⋅b+b⋅c+c⋅a =9−5−26=−22