Q. Let $x_{0}$ be the point of local maxima of $f(x)=\vec{a} \cdot(\vec{b} \times \vec{c}), $ where $\quad \vec{a}=x \hat{i}-2 \hat{j}+3 \hat{k}$ $\vec{ b }=-2 \hat{ i }+ x \hat{ j }-\hat{ k }$ and $\vec{ c }=7 \hat{ i }-2 \hat{ j }+ x \hat{ k }$. Then the value of $\vec{ a } \cdot \vec{ b }+\vec{ b } \cdot \vec{ c }+\vec{ c } \cdot \vec{ a }$ at $x = x _{0}$ is :
Solution: