We have, ∣v−i∣=∣v−2i∣=∣v−j∣
Clearly, v is circumcentre of ΔABC
where A(1,0),B(2,0),C(0,1) and O(x,y) ∴OA2=OB2=OC2 (x−1)2+(y−0)2=(x−2)2+y2 =x2+(y−1)2 ⇒x2−2x+1+y2=x2−4x+4+4+y2 =x2+y2−2y+1 ⇒2x=3 ⇒x=23 ⇒x2−2x+1+y2 =x2+y2−2y+1 ⇒x=y=3/2 ∴(x,y)=(23,23) ⇒v=23i^+23j^ ∣v∣=49+49 =232 lie in (2,3].