Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let vecv be a vector in the plane such that |v-i|=|v-2i|=|v-j| Then, |v| lies in the interval
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $\vec{v} $ be a vector in the plane such that $\left|v-i\right|=\left|v-2i\right|=\left|v-j\right|$ Then, $\left|v\right|$ lies in the interval
KVPY
KVPY 2016
A
(0, 1]
B
(1, 2)
C
(2, 3]
D
(3, 4]
Solution:
We have,
$\left|v-i\right|=\left|v-2i\right|=\left|v-j\right|$
Clearly, v is circumcentre of $\Delta\, ABC$
where $A(1, 0), B(2, 0), C (0, 1)$ and $O(x,y)$
$\therefore OA^{2}=OB^{2}=OC^{2}$
$(x-1)^{2}+(y-0)^{2}=(x-2)^{2}+y^{2}$
$=x^{2}+(y-1)^{2}$
$\Rightarrow x^{2}-2x+1+y^{2}=x^{2}-4x+4+4+y^{2}$
$=x^{2}+y^{2}-2y+1$
$\Rightarrow 2x=3$
$\Rightarrow x=\frac{3}{2}$
$\Rightarrow x^{2}-2x+1+y^{2}$
$=x^{2}+y^{2}-2y+1$
$\Rightarrow x=y=3/2$
$\therefore (x, y)= \left(\frac{3}{2}, \frac{3}{2}\right)$
$\Rightarrow \vec{v} =\frac{3}{2} \hat{i} +\frac{3}{2} \hat{j}$
$\left|\vec{v}\right|=\sqrt{\frac{9}{4}+\frac{9}{4}}$
$=\frac{3\sqrt{2}}{2}$ lie in $(2, 3]$.