Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let veca=α hati+2 hatj- hatk and vecb=-2 hati+α hatj+ hatk, where α ∈ R. If the area of the parallelogram whose adjacent sides are represented by the vectors veca and vecb is √15(α2+4), then the value of 2| a |2+( a ⋅ b )| b |2 is equal to
Q. Let
a
=
α
i
^
+
2
j
^
−
k
^
and
b
=
−
2
i
^
+
α
j
^
+
k
^
, where
α
∈
R
. If the area of the parallelogram whose adjacent sides are represented by the vectors
a
and
b
is
15
(
α
2
+
4
)
, then the value of
2∣
a
∣
2
+
(
a
⋅
b
)
∣
b
∣
2
is equal to
3953
136
JEE Main
JEE Main 2022
Vector Algebra
Report Error
A
10
B
7
C
9
D
14
Solution:
a
=
α
i
^
+
2
j
^
−
k
^
,
b
=
−
2
i
^
+
α
j
^
+
k
^
area of parallelogram
=
∣
a
^
×
b
^
∣
∣
a
^
×
b
^
∣
=
(
α
+
2
)
2
+
(
α
−
2
)
2
+
(
α
2
+
4
)
2
Given
∣
a
^
×
b
^
∣
=
15
(
α
2
+
4
)
2
(
α
2
+
4
)
+
(
α
2
+
4
)
2
=
15
(
α
2
+
4
)
(
α
2
+
4
)
2
=
13
(
α
2
+
4
)
⇒
α
2
+
4
=
13
∴
α
2
=
9
2∣
a
∣
2
+
(
a
⋅
b
)
∣
b
∣
2
∣
a
∣
2
=
α
2
+
4
+
1
=
α
2
+
5
∣
b
∣
2
=
4
+
α
2
+
1
=
α
2
+
5
a
⋅
b
=
−
2
α
+
2
α
−
1
=
−
1
∴
2∣
a
∣
2
+
(
a
⋅
b
)
∣
b
∣
2
2
(
α
2
+
5
)
−
1
(
α
2
+
5
)
=
α
2
+
5
=
14