Q. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=-2 \hat{i}+\alpha \hat{j}+\hat{k}$, where $\alpha \in R$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\vec{a}$ and $\vec{b}$ is $\sqrt{15\left(\alpha^{2}+4\right)}$, then the value of $2|\overrightarrow{ a }|^{2}+(\overrightarrow{ a } \cdot \overrightarrow{ b })|\overrightarrow{ b }|^{2}$ is equal to
Solution: