Given θ=tan−1(101)+tan−1(91)+…….+tan−1(1)+tan−1(2)+……+tan−1(10)+tan−1(11) θ=(tan−1(101)+tan−1(10))+(tan−1(91)+tan−1(9))+…….(tan−1(21)+tan−1(2))+tan−1(1)+tan−1(11) θ=9(2π)+4π+tan−1(11)=419π+tan−1(11) Now tanθ=tan(419π+tan−1(11))=1+1111−1=1210=65≡qp⇒p+q=11.