Q. Let $\theta=\tan ^{-1}\left(\frac{1}{10}\right)+\tan ^{-1}\left(\frac{1}{9}\right)+\ldots \ldots .+\tan ^{-1}(1)+\tan ^{-1}(2)+\ldots \ldots+\tan ^{-1}(10)+\tan ^{-1}(11)$. If $\tan \theta=\frac{p}{q}$ (where $p$ and $q$ are coprime), then find the value of $(p+q)$.
Inverse Trigonometric Functions
Solution: