- Tardigrade
- Question
- Mathematics
- Let θ1, θ2, ldots . ., θ10 be positive valued angles (in radian) such that θ1+θ2+ ldots . .+θ10=2 π. Define the complex numbers z1=ei θ1, zk=zk-1 ei θk for k=2,3, ldots ldots, 10, where i=√-1. Consider the statements P and Q given below: P:|z2-z1|+|z3-z2|+ ldots .+|z10-z9|+|z1-z10| ≤ 2 π Q:|z22-z12|+|z32-z22|+ ldots . .+|z102-z92|+|z12-z102| ≤ 4 π
Q.
Let be positive valued angles (in radian) such that . Define the complex numbers for , where . Consider the statements and given below:
Solution: