Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let θ1,θ2,..,θ10 be positive valued angles (in radian) such that θ1+θ2+..+θ10=2π. Define the complex numbers z1=eiθ1,zk=zk1eiθk for k=2,3,,10, where i=1. Consider the statements P and Q given below:
P:|z2z1|+|z3z2|+.+|z10z9|+|z1z10|2π
Q:|z22z21|+|z23z22|+..+|z210z29|+|z21z210|4π

JEE AdvancedJEE Advanced 2021

Solution:

image
z1=eiθ1
So, z2=ei(θ1+θ2)
z3=ei(θ1+θ2+θ3)
:
z10=ei(θ1+θ2++θ10)=ei(2π)
Sum of all the chord length < Circumference
So, |z2z1|2π
Also, 2|z2z1||z22z21|
Hence, 2(|z2z1|+..+|z10z1|)2(2π)=4π
So for, we have P2π and Q4π