Q.
Let $\theta_{1}, \theta_{2}, \ldots . ., \theta_{10}$ be positive valued angles (in radian) such that $\theta_{1}+\theta_{2}+\ldots . .+\theta_{10}=2 \pi$. Define the complex numbers $z_{1}=e^{i \theta_{1}}, z_{k}=z_{k-1} e^{i \theta_{k}}$ for $k=2,3, \ldots \ldots, 10$, where $i=\sqrt{-1}$. Consider the statements $P$ and $Q$ given below:
$P:\left|z_{2}-z_{1}\right|+\left|z_{3}-z_{2}\right|+\ldots .+\left|z_{10}-z_{9}\right|+\left|z_{1}-z_{10}\right| \leq 2 \pi $
$Q:\left|z_{2}^{2}-z_{1}^{2}\right|+\left|z_{3}^{2}-z_{2}^{2}\right|+\ldots . .+\left|z_{10}^{2}-z_{9}^{2}\right|+\left|z_{1}^{2}-z_{10}^{2}\right| \leq 4 \pi$
JEE AdvancedJEE Advanced 2021
Solution: