Given Binomial (x−x23)n,x=0,n∈N,
Sum of coefficients of first three terms nC0−nC1⋅3+nC232=376 ⇒3n2−5n−250=0 ⇒(n−10)(3n+25)=0 ⇒n=10
Now general term 10Crx10−r(x2−3)r =10Crx10−r(−3)r⋅x−2r =10Cr(−3)r⋅x10−3r
Coefficient of x4⇒10−3r=4 ⇒r=2 10C2(−3)2=405