Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N$, be $376$. Then the coefficient of $x^4$ is ______

JEE MainJEE Main 2023Binomial Theorem

Solution:

Given Binomial $\left( x -\frac{3}{ x ^2}\right)^{ n }, x \neq 0, n \in N$,
Sum of coefficients of first three terms
$ { }^{ n } C _0-{ }^{ n } C _1 \cdot 3+{ }^{ n } C _2 3^2=376$
$ \Rightarrow 3 n ^2-5 n -250=0 $
$\Rightarrow( n -10)(3 n +25)=0 $
$ \Rightarrow n =10$
Now general term ${ }^{10} C _{ r } x ^{10- r }\left(\frac{-3}{ x ^2}\right)^{ r }$
$ ={ }^{10} C _{ r } x ^{10- r }(-3)^{ r } \cdot x ^{-2 r }$
$ ={ }^{10} C _{ r }(-3)^{ r } \cdot x ^{10-3 r }$
Coefficient of $x ^4 \Rightarrow 10-3 r =4$
$\Rightarrow r =2 $
$ { }^{10} C _2(-3)^2=405$