Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the sequence < bn > of real numbers satisfies the recurrence relation bn+1=(1/3)(2 bn+(125/bn2)), bn ≠ 0 . Then find displaystyle lim n arrow ∞ bn
Q. Let the sequence
<
b
n
>
of real numbers satisfies the recurrence relation
b
n
+
1
=
3
1
(
2
b
n
+
b
n
2
125
)
,
b
n
=
0.
Then find
n
→
∞
lim
b
n
2525
249
Limits and Derivatives
Report Error
A
10
10%
B
15
0%
C
5
90%
D
25
0%
Solution:
Let
n
→
∞
lim
b
n
=
b
Now,
b
n
+
1
=
3
1
(
2
b
n
+
b
n
2
125
)
or
n
→
∞
lim
b
n
+
1
=
3
1
⎝
⎛
2
n
→
∞
lim
b
n
+
n
→
∞
lim
b
n
2
125
⎠
⎞
or
b
=
3
1
(
2
b
+
b
2
125
)
⇒
3
b
=
3
b
2
125
⇒
b
3
=
125
or
b
=
5.