Q. Let the sequence $< b_{n} >$ of real numbers satisfies the recurrence relation $b_{n+1}=\frac{1}{3}\left(2 b_{n}+\frac{125}{b_{n}^{2}}\right), b_{n} \neq 0 .$ Then find $\displaystyle\lim _{n \rightarrow \infty} b_{n}$
Limits and Derivatives
Solution: