M=(a−3,2β+b,2γ+c)
Since M lies on 3x+4y+12z+19=0 ⇒6a−4b+12c−4β+12γ+20=0
Since PP' is parallel to normal of the plane then 36=−4b−β=12c−γ ⇒β=b+8,γ=c−24 a+b+c=5⇒a+β−8+γ+24=5 ⇒a=−β−γ−11
Now putting these values in (1) we get 6(−β−γ−11)−4(β−8)+12(γ+24)−4β+12γ+20=0 ⇒7β−9γ=170−33=137