Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the mirror image of the point (a, b, c) with respect to the plane $3 x-4 y+12 z+19=0$ be ($a- 6, \beta, \gamma$ ). If $a+b+c=5$, then $7 \beta-9 \gamma$ is equal to_____.

JEE MainJEE Main 2022Three Dimensional Geometry

Solution:

image
$M =\left(a-3, \frac{\beta+b}{2}, \frac{\gamma+c}{2}\right)$
Since M lies on $3 x+4 y+12 z+19=0$
$\Rightarrow 6 a-4 b+12 c-4 \beta+12 \gamma+20=0$
Since PP' is parallel to normal of the plane then
$\frac{6}{3}=\frac{b-\beta}{-4}=\frac{c-\gamma}{12}$
$\Rightarrow \beta=b+8, \gamma=c-24$
$a+b+c=5 \Rightarrow a+\beta-8+\gamma+24=5$
$\Rightarrow a=-\beta-\gamma-11$
Now putting these values in (1) we get
$6(-\beta-\gamma-11)-4(\beta-8)+12(\gamma+24)-4 \beta+12 \gamma+20=0$
$\Rightarrow 7 \beta-9 \gamma=170-33=137$