Q.
Let the lines y+2x=11+77 and 2y+x=211+67 be normal to a circle C:(x−h)2+(y−k)2=r2. If the line 11y−3x=3577+11 is tangent to the circle C, then the value of (5h−8k)2+5r2 is equal to ______
Normal are y+2x=11+77 2y+x=211+67
Center of the circle is point of intersection of normals i.e. (387,11+357)
Tangent is 11y−3x=3577+11
Radius will be ⊥ distance of tangent from center
i.e. 457
Now (5h−8k)2+5r2=816