Q. Let the lines $y+2 x=\sqrt{11}+7 \sqrt{7}$ and $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ be normal to a circle $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. If the line $\sqrt{11} y-3 x=\frac{5 \sqrt{77}}{3}+11$ is tangent to the circle $C$, then the value of $(5 h-8 k)^{2}+5 r^{2}$ is equal to ______
Solution: