Q. Let the line $L: \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{1}$ intersect the plane $2 x+y+3 z=16$ at the point $P$. Let the point $Q$ be the foot of perpendicular from the point $R(1,-1,-3)$ on the line $L$. If $\alpha$ is the area of triangle $P Q R$, then $\alpha^2$ is equal to
Solution: