Q.
Let the integral I=∫1−(2020)2x(2020)x+(sin)−1(2020)xdx=K2(2020)(sin)−1(2020)x+λ (where, λ is the constant of integration), then the vaue of 2020K is
1397
214
NTA AbhyasNTA Abhyas 2020Integrals
Report Error
Solution:
Let, (sin)−1((2020)x)=t ⇒1−(2020)2x(2020)xln(2020)dx=dt ⇒I=∫ln(2020)(2020)tdt =ln(2020)2(2020)t+λ =(ln2020)2(2020)(sin)−1(2020)x+λ ∴K=ln20201=log2020e ∴2020K=2020log2020e=e