Q. Let the integral $I=\displaystyle \int \frac{\left(2020\right)^{x + \left(sin\right)^{- 1} \left(2020\right)^{x}}}{\sqrt{1 - \left(2020\right)^{2 x}}}dx$ $=K^{2}\left(2020\right)^{\left(sin\right)^{- 1} \left(2020\right)^{x}}+\lambda $ (where, $\lambda $ is the constant of integration), then the vaue of $2020^{K}$ is
NTA AbhyasNTA Abhyas 2020Integrals
Solution: