Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the function f :(-∞, ∞) arrow[-(π/2), (π/2)] be given by f ( x )= sin -1( log 3(( x 2- x +1/ x 2+ x +1))), then
Q. Let the function
f
:
(
−
∞
,
∞
)
→
[
−
2
π
,
2
π
]
be given by
f
(
x
)
=
sin
−
1
(
lo
g
3
(
x
2
+
x
+
1
x
2
−
x
+
1
)
)
, then
340
151
Relations and Functions - Part 2
Report Error
A
f
(
x
1
)
=
−
f
(
−
x
)
B
f
(
x
)
is a strictly increasing function in
(
−
∞
,
∞
)
C
f(x) is a surjective function
D
f (x) is a injective function.
Solution:
(A)
f
(
x
)
=
sin
−
1
(
lo
g
3
(
x
2
+
x
+
1
x
2
−
x
+
1
)
)
f
(
−
x
)
=
sin
−
1
(
lo
g
3
(
x
2
−
x
+
1
x
2
+
x
+
1
)
)
=
−
f
(
x
)
f
(
x
1
)
=
f
(
x
)
=
−
f
(
−
x
)
(B)
f
′
(
x
)
=
1
−
(
l
o
g
3
(
x
2
+
x
+
1
x
2
−
x
+
1
)
)
2
1
⋅
(
x
2
+
x
+
1
x
2
−
x
+
1
)
l
o
g
3
e
⋅
(
x
2
+
x
+
1
)
2
2
(
x
2
−
1
)
Since
x
2
+
x
+
1
x
2
−
x
+
1
∈
[
3
1
,
3
]
∴
f
(
x
)
=
[
2
−
π
,
2
π
]