Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the function $f :(-\infty, \infty) \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ be given by $f ( x )=\sin ^{-1}\left(\log _3\left(\frac{ x ^2- x +1}{ x ^2+ x +1}\right)\right)$, then

Relations and Functions - Part 2

Solution:

(A) $f(x)=\sin ^{-1}\left(\log _3\left(\frac{x^2-x+1}{x^2+x+1}\right)\right) $
$f(-x)=\sin ^{-1}\left(\log _3\left(\frac{x^2+x+1}{x^2-x+1}\right)\right)=-f(x)$
$f\left(\frac{1}{x}\right)=f(x)=-f(-x)$
(B) $ f ^{\prime}( x )=\frac{1}{\sqrt{1-\left(\log _3\left(\frac{ x ^2- x +1}{ x ^2+ x +1}\right)\right)^2}} \cdot \frac{\log _3 e }{\left(\frac{ x ^2- x +1}{ x ^2+ x +1}\right)} \cdot \frac{2\left( x ^2-1\right)}{\left( x ^2+ x +1\right)^2}$
image
Since $\frac{x^2-x+1}{x^2+x+1} \in\left[\frac{1}{3}, 3\right]$
$\therefore f ( x )=\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$