Q.
Let the complex numbers α and (α1) lie on circles (x−x0)2+(y−y0)2=r2 and (x−x0)2+(y−y0)2=4r2 respectively. If z0+iy0 satisfies the equation 2∣z0∣2=r2+2 then ∣α∣=
As point α lies on the circle (x−x0)2+(y−y0)2=r2 ∴∣α−z0∣2=r2, where z0=x0+iy0 ⇒∣α∣2+∣z0∣2−(αzˉ0+αˉz0)=r2 ...(i) ∵α1 lies on the circle (x−x0)2+(y−y0)2=4r2 ∴∣∣α1−z0∣∣2=4r2 ⇒∣α∣21+∣z0∣2−(∣α∣2αˉ0+∣α∣∣2αˉz0)=4r2 ⇒1+∣z0∣2∣α∣2−(αzˉ0+αˉz0)=4r2∣α∣2 ...(ii)
By subtracting Eqs. (i) and (ii), we get 1−∣α∣2−∣z0∣2(1−∣α∣2)=r2(4∣α∣2−1) ⇒(∣α∣2−1)(∣z0∣2−1)=r2(4∣α∣2−1) ∵∣z0∣2=2r2+2, we get (∣α∣2−1)2r2=r2(4∣α∣2−1) ⇒∣α∣2−1=8∣α∣2−2 ⇒7∣α∣2=1 ⇒∣α∣=71