Q. Let the complex numbers $\alpha$ and $\left(\frac{1}{\alpha}\right)$ lie on circles $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ and $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=4 r^{2}$ respectively. If $z_{0}+i y_{0}$ satisfies the equation $2\left |z_{0}\right|^{2}=r^{2}+2$ then $|\alpha|=$
AP EAMCETAP EAMCET 2020
Solution: