Q.
Let S={z∈C:∣z−2∣≤1,z(1+i)+zˉ(1− i) ≤2}. Let ∣z−4i∣ attains minimum and maximum values, respectively, at z1∈S and z2∈S. If 5(∣z1∣2+∣z2∣2)=α+β5, where α and β are integers, then the value of α+β is equal to ________.
∣z−2∣≤1 (x−2)2+y2≤1……(1) & z(1+i)+Zˉ(1−i)≤2
Put z=x+iy ∴x−y≤1…(2) PA=17,PB=13
Maximum is PA & Minimum is PD
Let D(2+cosθ,0+sinθ) ∴mcp=tanθ=−2 cosθ=−51,sinθ=52 ∴D(2−51,52) ⇒z1=(2−51)+52i ∣z1∣=525−45&z2=1 ∴∣z2∣2=1 ∴5(∣z1∣2+∣z2∣2)=30−45 ∴α=30 β=−4 ∴α+β=26