Q. Let $\quad S=\{z \in C:|z-2| \leq 1, z(1+i)+\bar{z}(1-$ i) $\leq 2\}$. Let $|z-4 i|$ attains minimum and maximum values, respectively, at $z _{1} \in S$ and $z _{2} \in S$. If $5\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)=\alpha+\beta \sqrt{5}$, where $\alpha$ and $\beta$ are integers, then the value of $\alpha+\beta$ is equal to ________.
Solution: