Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sn= displaystyle∑r=0n-1 cos -1((n2+r2+r/√n4+r4+2 r3+2 n2 r2+2 n2 r+n2+r2)). Then the value of S100, is
Q. Let
S
n
=
r
=
0
∑
n
−
1
cos
−
1
(
n
4
+
r
4
+
2
r
3
+
2
n
2
r
2
+
2
n
2
r
+
n
2
+
r
2
n
2
+
r
2
+
r
)
. Then the value of
S
100
, is
235
135
Inverse Trigonometric Functions
Report Error
A
12
π
B
3
π
C
6
π
D
4
π
Solution:
S
n
=
r
=
0
∑
n
−
1
tan
−
1
(
n
2
+
r
(
r
+
1
)
n
)
S
n
=
r
=
0
∑
n
−
1
tan
−
1
(
1
+
n
r
+
1
⋅
n
r
n
1
)
S
n
=
r
=
0
∑
n
−
1
tan
−
1
(
1
+
n
r
+
1
⋅
n
r
n
r
+
1
−
n
r
)
S
n
=
r
=
0
∑
n
−
1
tan
−
1
(
n
r
+
1
)
−
tan
−
1
n
r
S
n
=
(
tan
−
1
n
1
−
0
)
+
(
tan
−
1
n
2
−
tan
−
1
n
1
)
+
(
tan
−
1
1
−
tan
−
1
n
n
−
1
)
∴
S
n
=
S
100
=
4
π