Q. Let $S_n=\displaystyle\sum_{r=0}^{n-1} \cos ^{-1}\left(\frac{n^2+r^2+r}{\sqrt{n^4+r^4+2 r^3+2 n^2 r^2+2 n^2 r+n^2+r^2}}\right)$. Then the value of $S_{100}$, is
Inverse Trigonometric Functions
Solution:
Solution: