Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sn=1 ⋅(n-1)+2 ⋅(n-2)+3 ⋅(n-3)+ ldots+ ( n -1) ⋅ 1, n ≥ 4 The sum displaystyle∑n=4∞((2 Sn/n !)-(1/(n-2) !)) is equal to :
Q. Let
S
n
=
1
⋅
(
n
−
1
)
+
2
⋅
(
n
−
2
)
+
3
⋅
(
n
−
3
)
+
…
+
(
n
−
1
)
⋅
1
,
n
≥
4
The sum
n
=
4
∑
∞
(
n
!
2
S
n
−
(
n
−
2
)!
1
)
is equal to :
2861
191
JEE Main
JEE Main 2021
Sequences and Series
Report Error
A
3
e
−
1
B
6
e
−
2
C
3
e
D
6
e
Solution:
Let
T
r
=
r
(
n
−
r
)
T
r
=
n
r
−
r
2
⇒
S
n
=
r
=
1
∑
n
T
r
=
r
=
1
∑
n
(
n
r
−
r
2
)
S
n
=
2
n
⋅
(
n
)
(
n
+
1
)
−
6
n
(
n
+
1
)
(
2
n
+
1
)
S
n
=
6
n
(
n
−
1
)
(
n
+
1
)
Now
r
=
4
∑
∞
(
n
!
2
S
n
−
(
n
−
2
)!
1
)
=
r
=
4
∑
∞
(
2
⋅
6
⋅
n
(
n
−
1
)
(
n
−
2
)!
n
(
n
−
1
)
(
n
+
1
)
−
(
n
−
2
)!
1
)
=
r
=
4
∑
∞
(
3
1
(
(
n
−
2
)!
n
−
2
+
3
)
−
(
n
−
2
)!
1
)
=
(
n
−
3
)!
1
=
3
1
(
e
−
1
)