Q.
Let $S_{n}=1 \cdot(n-1)+2 \cdot(n-2)+3 \cdot(n-3)+\ldots+$ $( n -1) \cdot 1, n \geq 4$
The sum $\displaystyle\sum_{n=4}^{\infty}\left(\frac{2 S_{n}}{n !}-\frac{1}{(n-2) !}\right)$ is equal to :
Solution: