Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S be the sum of the first 9 terms of the series: x+k a + x2+(k+2) a + x3+(k+4) a + x4+(k+6) a + ldots . . where a ≠ 0 and x ≠ 1 . If S =( x 10- x +45 a ( x -1)/ x -1), then k is equal to :
Q. Let
S
be the sum of the first
9
terms of the series:
{
x
+
ka
}
+
{
x
2
+
(
k
+
2
)
a
}
+
{
x
3
+
(
k
+
4
)
a
}
+
{
x
4
+
(
k
+
6
)
a
}
+
…
..
where
a
=
0
and
x
=
1.
If
S
=
x
−
1
x
10
−
x
+
45
a
(
x
−
1
)
,
then
k
is equal to :
1678
206
JEE Main
JEE Main 2020
Sequences and Series
Report Error
A
-5
21%
B
1
5%
C
-3
53%
D
3
21%
Solution:
S
=
[
x
+
ka
+
0
]
+
[
x
2
+
ka
+
2
a
]
+
[
x
3
+
ka
+
+
4
a
]
+
[
x
4
+
ka
+
6
a
]
+
…
9
terms
⇒
S
=
(
x
+
x
2
+
x
3
+
x
4
+
…
..9
terms
)
+
(
ka
+
kan
+
ka
+
ka
+
……
.9
terms
)
+
(
0
+
2
a
+
4
a
+
6
a
+
…
9
terms
⇒
S
=
x
[
x
−
1
x
9
−
1
]
+
9
ka
+
72
a
⇒
S
=
(
x
−
1
)
(
x
10
−
x
)
+
(
9
k
+
72
)
a
(
x
−
1
)
Compare with given sum, then we get,
(
9
k
+
72
)
=
45
⇒
k
=
−
3