Q. Let $S$ be the sum of the first $9$ terms of the series: $\{x+k a\}+\left\{x^{2}+(k+2) a\right\}+\left\{x^{3}+(k+4) a\right\}+$ $\left\{x^{4}+(k+6) a\right\}+\ldots . .$ where $a \neq 0$ and $x \neq 1 . $ If $S =\frac{ x ^{10}- x +45 a ( x -1)}{ x -1},$ then $k$ is equal to :
Solution: