cos−1(2x)−2cos−11−x2=π cos−1(2x)−cos−1(2(1−x2)−1)=π cos−1(2x)−cos−1(1−2x2)=π −cos−1(1−2x2)=π−cos−1(2x)
Taking cos both sides we get Cos(−cos−1(1−2x2))=cos(π−cos−1(2x)) 1−2x2=−2x 2x2−2x−1=0
On solving, x=21−3,21+3
As x=[−1/2,1/2],x=21+3= rejected
So x=21−3⇒x2−1=−3/2 =2sin−1(x2−1)=2sin−1(2−3)=3−2π